Activation and sensitisation of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder.

نویسندگان

  • Weifang Rong
  • K Michael Spyer
  • Geoffrey Burnstock
چکیده

It has been proposed that extracellular ATP may be involved in visceral mechanosensory transduction by activating ligand-gated ion channels (P2X receptors). In this study, we have investigated the effects of the P2X(3) agonist alpha,beta-methylene ATP (alpha,beta-meATP) and antagonist 2',3'-O-trinitrophenyl-ATP (TNP-ATP) on pelvic afferents innervating the urinary bladder using an in vitro mouse bladder-pelvic nerve preparation. Intravesical application of alpha,beta-meATP (0.03-1 mM) increased multifibre discharges in a concentration-dependent manner. The agonist potentiated, whereas TNP-ATP (0.03 mM) attenuated, the multifibre responses to bladder distensions. Single-unit analysis revealed that both high threshold (HT) fibres (> 15 mmHg; known to be associated with nociception) and low threshold (LT) fibres (< 15 mmHg; probably associated with non-nociceptive events) could be induced to discharge by intravesical alpha,beta-meATP (1 mM, 0.1 ml). The response of the vast majority (21/22, 95.5 %) of HT fibres to bladder distensions was enhanced with a significantly reduced threshold and an increased peak response after exposure to the agonist. On the other hand, 59.7 % (46/77) of LT fibres showed a greater peak and a slightly reduced threshold for response to bladder distension in the presence of alpha,beta-meATP. An additional 11 'silent' fibres became mechanosensitive after exposure to alpha,beta-meATP. TNP-ATP (0.03 mM) did not affect the threshold of LT fibres, but it reduced the peak response of some (22/51, 43.1 %) LT fibres. Conversely, the antagonist resulted in a markedly elevated threshold and reduced peak activity in the majority (13/16, 81.3 %) of HT fibres. The results support the view that P2X(3) receptor-mediated mechanisms contribute to both nociceptive and non-nociceptive (physiological) mechanosensory transduction in the urinary bladder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of purinergic P2X and P2Y2 receptors in urinary bladder sensation

Interstitial cystitis (IC)/painful bladder syndrome (PBS) is a functional visceral disorder characterized by increased bladder activity and chronic pelvic pain in the absence of a pathobiological condition. Enhanced sensory transduction of peripheral bladder afferents is hypothesized to contribute to the pain and mechanical hypersensitivity of IC/PBS patients. The aim of this thesis is to test ...

متن کامل

P2X receptor expression in mouse urinary bladder and the requirement of P2X(1) receptors for functional P2X receptor responses in the mouse urinary bladder smooth muscle.

1. We have used subtype selective P2X receptor antibodies to determine the expression of P2X(1 - 7) receptor subunits in the mouse urinary bladder. In addition we have compared P2X receptor mediated responses in normal and P2X(1) receptor deficient mice to determine the contribution of the P2X(1) receptor to the mouse bladder smooth muscle P2X receptor phenotype. 2. P2X(1) receptor immunoreacti...

متن کامل

Bladder and cutaneous sensory neurons of the rat express different functional P2X receptors.

The expression and functional responses of P2X receptors in bladder and cutaneous sensory neurons of adult rats and mice have been studied using immunohistochemistry and patch clamp techniques. Cell bodies of bladder pelvic afferents were identified in L6 and S1 dorsal root ganglia (DRG), following Fast Blue injection into the muscle wall of the urinary bladder. Similarly, cutaneous sensory neu...

متن کامل

P2X3 knock-out mice reveal a major sensory role for urothelially released ATP.

The present study explores the possible involvement of a purinergic mechanism in mechanosensory transduction in the bladder using P2X(3) receptor knock-out (P2X(3)-/-) and wild-type control (P2X(3)+/+) mice. Immunohistochemistry revealed abundant nerve fibers in a suburothelial plexus in the mouse bladder that are immunoreactive to anti-P2X(3). P2X(3)-positive staining was completely absent in ...

متن کامل

The P2Y2 receptor sensitizes mouse bladder sensory neurons and facilitates purinergic currents.

Sensitization of bladder afferents is an underlying contributor to the development and maintenance of painful bladder syndrome/interstitial cystitis. Extracellular purines and pyrimidines (e.g., ATP and UTP), released during bladder distension or from damaged cells after tissue insult, are thought to play an important role in bladder physiological and pathological states by actions at ionotropi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 541 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002